Master Langchain v1 and Ollama - Chatbot, RAG and AI Agents
OFF
DevelopmentOllama

Master Langchain v1 and Ollama - Chatbot, RAG and AI Agents

4.6
(5,225 students)
17h 30m

>_ What You'll Learn

  • Install and integrate LangChain v1 and Ollama to run Qwen3, Gemma3, DeepSeek R1, GPT-OSS, LLAMA, and custom GGUF models locally.
  • Build complete chatbots with memory, history, streaming responses, and a Streamlit UI.
  • Use prompt templates, LCEL chains, chain routing, parallel chains, custom chains, and runnable pipelines to structure LLM workflows.
  • Parse structured output using Pydantic, JSON, CSV parsers, and .with_structured_output() methods.
  • Implement advanced retrieval systems including similarity search, MMR search, threshold search, and optimized chunking.
  • Use tool calling and function calling with DuckDuckGo, Tavily, Wikipedia, PubMed, and custom tools.
  • Build production-ready AI agents using LangChain v1 agent API, dynamic model selection, middleware, state management, and real-time streaming.
  • Create Agentic RAG systems including autonomous retrieval, context citation, custom FAISS tools, and streamed agentic responses.
  • Build a complete Text-to-SQL Agent for MySQL with schema extraction, SQL generation, validation, execution, and automated error correction.
  • Build LinkedIn scraper, resume parser, and data extraction workflows using Selenium, BeautifulSoup, LLM parsing, and Streamlit apps.
  • Deploy LangChain v1 + Ollama applications to AWS EC2, configure remote servers, and run production-level AI apps.

>_ Requirements

  • Basic Python programming knowledge
  • Familiarity with APIs and web requests
  • Basic understanding of machine learning concepts
  • Access to a computer with internet for installations and setups
  • Curiosity to learn LLMs, AI agents, and RAG systems — everything else will be taught step-by-step.

/ Course Details & Curriculum

2026 Upgrade: Course completely re-recorded with LangChain v1 and LangGraph v1. All projects, agents, tools, and RAG pipelines rebuilt from scratch. **Perfect for developers, AI engineers, and serious learners who want production-grade GenAI skills.** This course is a comprehensive, practical guide to integrating Langchain v1 (latest release) and Ollama to build, automate, and deploy production-ready AI applications. Updated with the newest technologies and frameworks, you'll learn to set up these cutting-edge tools, create advanced prompt templates, build autonomous AI agents, implement RAG (Retrieval-Augmented Generation) systems, and deploy real-world applications on AWS. Each section is designed to provide you with hands-on skills and real-world experience with the latest AI development practices. What You Will Learn 1. Ollama & Langchain Setup - Complete installation and configuration of Ollama and Langchain - Work with the latest models: GPT-OSS, Gemma3, Qwen3, DeepSeek R1, and LLAMA 3.2 - Master Ollama commands, custom model creation, and raw API integration - Configure local LLM environments for optimal performance 2. Advanced Prompt Engineering - Design effective AI, human, and system message prompts - Use ChatPromptTemplate and MessagesPlaceholder for dynamic conversations - Master the invoke method and structured prompt patterns - Implement best practices for prompt tuning and optimization 3. LCEL Chains for Workflow Automation - Build Sequential, Parallel, and Router Chains with Langchain Expression Language (LCEL) - Create custom chains using RunnableLambda and RunnablePassthrough - Implement chain decorators for simplified workflow automation - Design conditional logic and dynamic chain routing for complex applications 4. Structured Output Parsing - Parse LLM outputs using Pydantic, JSON, CSV, and custom parsers - Use with_structured_output method for type-safe responses - Handle date-time parsing and structured data extraction - Format data for downstream processing and integration 5. Chat Memory and Conversation Management - Implement chat history with BaseChatMessageHistory and InMemoryChatMessageHistory - Use MessagesPlaceholder for dynamic conversation flow - Build stateful conversational AI applications - Manage long-term chat sessions efficiently 6. Build Production-Ready Chatbots - Create interactive chatbot applications using Streamlit - Implement streaming responses like ChatGPT - Maintain persistent chat history and session state - Deploy user-friendly chat interfaces with real-time updates 7. Document Processing with Multiple Loaders - Process PDFs using PyMuPDF and create QA systems - Work with Microsoft Office files (PPTX, DOCX, Excel) - Use Microsoft's MarkItDown for universal document conversion - Implement IBM's Docling for advanced OCR and document processing - Extract tables, images, and figures from any document type 8. Vector Stores and RAG Implementation - Build Retrieval-Augmented Generation (RAG) systems with FAISS and Chroma - Create and manage vector embeddings using OllamaEmbeddings - Implement document chunking strategies with RecursiveTextSplitter - Optimize chunk sizes for better retrieval performance - Design RAG prompt templates for context-aware responses 9. Agentic RAG Systems - Build autonomous RAG agents that retrieve and reason - Create custom tool decorators for agent capabilities - Implement real-time streaming for agent responses - Integrate vector stores with intelligent agent workflows 10. Tool Calling and Function Execution - Set up built-in tools: Tavily Search, DuckDuckGo, PubMed, Wikipedia - Create custom tools and bind them to LLMs - Implement tool calling loops for multi-step reasoning - Pass tool results back to LLMs for informed responses 11. AI Agents with Langchain - Master the create_agent API for building intelligent agents - Build web search agents with DuckDuckGo integration - Implement agent state management and middleware - Create dynamic model selection for intelligent agent routing - Stream agent responses in real-time using values, updates, and messages 12. Text-to-SQL Agent (MySQL Integration) - Build natural language to SQL query systems - Create schema inspection, query generation, and validation tools - Implement automatic SQL error correction with LLMs - Execute complex database queries from natural language 13. Real-World AI Projects - Stock Market News Analysis: Scrape web data and generate comprehensive reports - LinkedIn Profile Scraper: Extract and parse profile data with LLMs - Resume Parser: Build AI-powered CV analysis and JSON extraction system - Health Supplements QA: Create domain-specific RAG question-answering systems 14. Production Deployment on AWS - Launch and configure AWS EC2 instances for LLM applications - Install Ollama and Langchain on cloud servers - Deploy Streamlit applications in production environments - Connect VS Code to remote servers for seamless development By the end of this course, you'll have the expertise to build, deploy, and manage production-grade AI-powered applications using Langchain and Ollama. You'll be able to create intelligent chatbots, RAG systems, autonomous agents, and document processors that are ready for real-world deployment. Start building the future of AI applications today.

Author and Instructor

K

KGP Talkie | Laxmi Kant

Expert at Udemy

With years of hands-on experience in Development, KGP Talkie | Laxmi Kant has dedicated thousands of hours to teaching and mentorship. This course is the culmination of industry best practices and a proven curriculum that has helped thousands of students transition into professional roles.

Community Feedback

M

Michael Chen

Verified Enrollment

"This Master Langchain v1 and Ollama - Chatbot, RAG and AI Agents course was exactly what I needed. The instructor explains complex Development concepts clearly. Highly recommended!"

S

Sarah Johnson

Verified Enrollment

"I've taken many Udemy courses on cloud computing & architectural engineering, but this one stands out. The practical examples helped me land a job."

D

David Smith

Verified Enrollment

"Great value for money. The section on Ollama was particularly helpful."

E

Emily Davis

Verified Enrollment

"Excellent structure and pacing. I went from zero to hero in Development thanks to this course. Lifetime access is a huge plus."

Common Questions

Is the "Master Langchain v1 and Ollama - Chatbot, RAG and AI Agents" course truly discounted?
Yes. By utilizing our verified 90% coupon, you can enroll in "Master Langchain v1 and Ollama - Chatbot, RAG and AI Agents" at a massive discount. This grants you lifetime access to all course materials and updates.
Do I qualify for a certificate upon completion?
Yes. When you enroll with a 90% coupon provided by CoursesWyn, you follow the same path as a paid student and are eligible for the official completion certificate from Udemy.
What happens if the coupon code expires?
Udemy coupons have strict enrollment limits and time windows. If this code expires, we recommend bookmarking this page and checking back daily, as we refresh our deals constantly to find the latest active discounts.
$99.99Save 90%
$9.99

Verified Discount Code

CLAIM DISCOUNT 🚀
Lifetime Access
🏆Official Certificate
📱Access on Mobile/TV
🔄Latest Updated Course

Claim Your Discount Code

XXXXXXXX
CLICK TO SHOW
$99.99
$9.9990%
GET DEAL